Mark Scheme (Results)

## June 2011

GCE Decision D1 (6689) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA027669
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

## EDEXCEL GCE MATHEMATICS

## General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of $M$ marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
-     * The answer is printed on the paper
- $\quad$ The second mark is dependent on gaining the first mark

June 2011
Decision Mathematics D1 6689
Mark Scheme

| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 1. <br> (a) | The list is not in alphabetical order. | B1 <br> (1) |
| (b) |  | M1 <br> A1 <br> A1 $\mathrm{A} 1=\mathrm{B} 1$ <br> (4) |
| (c) | Pivot $1=\left[\frac{1+10}{2}\right]=6$ Jenny reject 1-6 <br> Pivot $2=\left[\frac{7+10}{2}\right]=9$ Richard reject 9-10 <br> Pivot $3=\left[\frac{7+8}{2}\right]=8$ Merry reject 8 <br> Pivot $4=7 \mathrm{Kim}$ - name found | M1 A1 <br> A1ft <br> A1 <br> (4) <br> 9 |
| (a) B 1 <br> (b) M1 <br> 1A1 <br> 2A1 <br> 3A1=2B1 <br> (c) M1 <br> 1A1 <br> 2A1 <br> 3A1 | Notes: <br> CAO - phonetically close <br> Quick sort - pivots, p , selected and first pass gives $<\mathrm{p}, \mathrm{p},>\mathrm{p}$. <br> First two passes correct, pivots chosen consistently for third pass <br> CAO Sort completed correctly <br> 'Stop' + plus correct name for their sort - phonetically close <br> Using their 'sorted list' + choosing middle right pivots+ discarding/retaining half the list. It their list is not in full alphabetical order M1 only. <br> First pass correct ie $6^{\text {th }}$ item for a correct list (no sticky pivots) <br> Second and third passes correct ie $9^{\text {th }}$ and $8^{\text {th }}$ items from a correct list (no sticky pivots) <br> CSO search complete + 'found' |  |

:
advancing learning, changing lives

| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 2. <br> (a)(i) <br> (a)(ii) | A tree is a connected graph with no cycles/circuit <br> A minimum spanning tree is a tree that contains all vertices and the total length of its arcs (weight of tree) is as small as possible. | B1 <br> B1 <br> B1 <br> (3) |
| (b) | $A B, D E, B C ;\left\{\begin{array}{c}\text { reject } A C \\ B D\end{array}\right\}$ reject $B E$, reject $C E$, use either $E F$ or $C F$ | $\begin{aligned} & \text { M1; A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$ |
| (c) |  | B1 (1) |
| (d) | No, there are two solutions since either EF or CF should be used. | B1 |
| (a)1B1  <br> 2B1  <br> 3B1  <br> (b)M1  <br> 1A1  <br> 2A1  <br> (c)B1  <br> (d)B1  | Notes <br> Connected + no cycles <br> Contains all vertices <br> Total length of arcs used minimised or minimum weight. (Not shortest/smallest etc.) <br> First four arcs selected correctly in correct order. <br> Arcs selected correctly at correct time <br> Rejections correct and at correct time <br> CAO <br> CAO - mark explanation must specify two arcs of 18 or two 18 's or ref to EF and CF |  |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 3. <br> (a) | $\begin{aligned} & 6 x+5 y \leq 60 \\ & 2 x+3 y \geq 12 \\ & 3 x \geq 2 y \\ & x \leq 2 y \end{aligned}$ | B2,1,0 <br> (2) |
| (b) | Drawing objective line $\{(0,3)(1,0)\}$ Testing at least 2 points Calculating optimal point Testing at least 3 points $\left(7 \frac{1}{17}, 3 \frac{9}{17}\right)=\left(\frac{120}{17}, \frac{60}{17}\right) \approx(7.06,3.53)$ | M1 A1 <br> DM1 <br> Al awrt <br> (4) |
| (c) | $24 \frac{12}{17}=\frac{240}{17} \approx 24.7$ (awrt) | B1 <br> (1) |
| (d) <br> Notes: <br> (a)1B1 2B1 <br> (b) 1M1 <br> 1A1 <br> 2DM1 <br> 2A1 <br> (c)B1 <br> (d)B1 | $\begin{aligned} & (6,4) \\ & \left(3 \frac{3}{7}, 1 \frac{5}{7}\right)=\left(\frac{24}{7}, \frac{12}{7}\right) \approx(3.43,1.71) \rightarrow 12 \\ & \left(1 \frac{11}{13}, 2 \frac{10}{13}\right)=\left(\frac{24}{13}, \frac{36}{13}\right) \approx(1.85,2.77) \rightarrow 8.307692\left(8 \frac{4}{13}=\frac{108}{13}\right) \\ & \left(4 \frac{4}{9}, 6 \frac{2}{3}\right)=\left(\frac{40}{9}, \frac{20}{3}\right) \approx(4.44,6.67) \rightarrow 20 \\ & \left(7 \frac{1}{17}, 3 \frac{9}{17}\right)=\left(\frac{120}{17}, \frac{60}{17}\right) \approx(7.06,3.53) \rightarrow 24.705882\left(24 \frac{12}{17}=\frac{420}{17}\right) \end{aligned}$ <br> Notes <br> Any two inequalities correct, accept < and > here (but not = of course). <br> All four correct. Must be $\leq$ and $\geq$ here <br> Drawing objective line or its reciprocal OR testing two vertices in the feasible region (see list above) points correct to 1 dp . <br> Correct objective line OR two points correctly tested ( 1 dp ok ) <br> Calculating optimal point either answer to 2 dp or better or using S.E's (correct 2 equations for their point + attempt to eliminate one variable.); OR Testing three points correctly and optimal one to 2 dp . <br> CAO 2 dp or better. <br> CAO <br> CAO not $(4,6)$. | B1 <br> (1) <br> 8 |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 4. <br> (a) | $\begin{align*} & \text { [Given } \mathrm{A}-3=\mathrm{R}-4=\mathrm{C}-5 \text { ] } \\ & \mathrm{A}-1=\mathrm{H}-2 \\ & \mathrm{~A}-1=\mathrm{H}-3=\mathrm{R}-4=\mathrm{C}-5 \tag{3} \end{align*}$ | $\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$ |
| (b) | $\mathrm{A}=3, \mathrm{C}=5, \mathrm{H}=1,(\mathrm{~J}$ unmatched $), \mathrm{R}=4$ | B1 <br> (1) |
| (c) | Alternating path : $\mathrm{J}-4=\mathrm{R}-3=\mathrm{A}-1=\mathrm{H}-2$ Change status: $\mathrm{J}=4-\mathrm{R}=3-\mathrm{A}=1-\mathrm{H}=2$ $\mathrm{A}=1, \mathrm{C}=5, \mathrm{H}=2, \mathrm{~J}=4, \mathrm{R}=3$ | M1 <br> A1 <br> A1 <br> (3) 7 |
| $\begin{array}{r} \text { (a)M1 } \\ \text { 1A1 } \\ \text { 2A1 } \\ \text { (b)B1 } \\ \text { (c)M1 } \\ \text { 1A1 } \\ \text { 2A1 } \end{array}$ | Notes <br> Path from A to 2 or 5 - or vice versa <br> One correct path selected OR tree showing the missing two paths only. <br> Both correct paths listed separately <br> CAO <br> Path from J to 2 - or vice versa <br> Correct path including change status <br> CAO must follow through from stated path. |  |



| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 6. <br> (a) | ACDFEGH <br> Length 71 (km) | M1 <br> A1 <br> (ABCD) <br> A1ft <br> (EF) <br> A1ft <br> (GH) <br> A1 <br> A1ft <br> (6) |
| (b) | E.g. $71-12=59 \mathrm{GH} \quad 49-10=39 \mathrm{FE} \quad 24-13=11 \mathrm{CD}$ <br> $59-10=49 \mathrm{EG} \quad 39-15=24 \mathrm{DF} \quad 11-11=0 \mathrm{AC}$ <br> Or Trace back from H including arc XY if (Y already lies on the path and) the difference of the final values of X and Y equals weight of arc XY . | B2,1,0 <br> (2) |
| (c) | ACBEGH <br> Length 72 (km) | B1 <br> B1 <br> (2) 10 |
| $\begin{array}{r} \text { (a)M1 } \\ \text { 1A1 } \\ \text { 2A1ft } \\ \text { 3A1ft } \\ \text { 4A1 } \\ \text { 5A1ft } \\ \text { (b)1B1 } \\ \text { 2B1 } \\ \text { (c)1B1 } \\ \text { 2B1 } \end{array}$ | Notes <br> Big replaced by smaller at least once at B or D or E or G or H <br> A, B, C, D boxes all correct, condone lack of 0 in 's working value <br> E and F ft correctly <br> G and Hft correctly <br> CAO <br> ft on their final value. <br> Attempting an explanation, at least 3 stages or one half of general explanation Correct explanation - all six stages, both halves of explanation CAO <br> CAO |  |

advancing learning, changing lives

| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| 7. <br> (a) | Activity Proceeded by Activity Proceeded by Activity Proceeded by <br> (A) $(-)$ E A B I C D E <br> (B) $(-)$ (F) (B) J C D E <br> C A B (G) (B) K F H I <br> (D) (B) H C D L F G H I |  |
| (b) |  | M1 A1 M1 A1 |
| (c) | Critical activities are B D J H L | M1 A1 <br> (2) |
| (d) |  | M1 A1 M1 A1 |


| Question Number | Scheme | Marks |
| :---: | :---: | :---: |
| (e) | E.g. <br> Between time 7 and 16, 3 workers could do $3 \times 9=27$ days work. <br> Activities C, D, E, F, G, H, I and 4 days of J need to be done <br> This totals 31 days work. <br> So it is not possible to complete the project with three workers. <br> OR <br> If three workers are used three activities H , J and I need to happen at time 13.5 , this reduces the float on F and G , meaning that at $10.5 \mathrm{D}, \mathrm{C}, \mathrm{F}$ and G need to be happening. Our initial assumption is incorrect hence four workers are needed. | B3,2,1,0 <br> (3) 16 |
| (a)1B1 2B1 3B1 (b)1M1 1A1 2M1 2A1 (c)M1 A1 (d)1M1 1A1 2 M 1 2 A 1 (e)1B1 2B1 3B1 | Notes <br> Any two rows correct <br> Any four rows correct <br> All seven rows correct <br> All top boxes complete, values generally increasing left to right, condone one rogue CAO <br> All bottom boxes complete, values generally decreasing $R$ to $L$, condone one rogue CAO <br> Accept dummies, repeats and condone one absence or one extra; or BDHL or BDJ <br> CAO (dummies and repeats ok) <br> At least 9 activities including at least 4 floats. Do not accept scheduling diagram. <br> Critical activities dealt with correctly <br> All 12 activities including at least 7 floats <br> Non-critical activities dealt with correctly. <br> Attempt at explanation - one correct idea. <br> Good explanation, some imprecise or vague statements - give bod <br> Fully correct explanation. No bod needed |  |


| Question <br> Number | Scheme | Marks |
| :---: | :---: | :---: |
| 8. | Let $x$ be the number of type A radios and y be the number of type B radios. $\begin{aligned} & (\text { Maximise } \mathrm{P}=) 15 x+12 y \\ & \text { Subject to } \\ & x \geq 50 \\ & \frac{1}{5}(x+y)<x \quad(\text { accept } \leq)[y<4 x] \\ & \frac{2}{5}(x+y)>x \quad(\text { accept } \geq)[2 y>3 x] \\ & 3 x+2 y \leq 200 \\ & y \geq 0 \end{aligned}$ | B1 <br> B1 <br> B1 <br> B1 <br> B1 <br> B1 <br> B1 |
| $\begin{aligned} & 1 B 1 \\ & 2 B 1 \\ & 3 B 1 \\ & 4 B 1 \\ & 5 B 1 \\ & 6 B 1 \\ & 7 B 1 \end{aligned}$ | Notes <br> Defining $x$ and $y$; Must see 'number of' CAO objective function $15 x+12 y$ <br> CAO $\quad x \geq 50$ <br> CAO o.e $\quad \frac{1}{5}(x+y)<x \Rightarrow y<4 x$ <br> CAO o.e $\quad \frac{2}{3}(x+y)>x \Rightarrow 2 y>3 x$ <br> CAO o.e $\quad 3 x+2 y \leq 200$ <br> CAO $\quad y \geq 0$ |  |



Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA027669 June 2011


For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

